Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prostate Cancer ; 2023: 6641707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885823

RESUMO

Background: Androgen deprivation therapy (ADT) for prostate cancer is implicated as a possible cause of cognitive impairment (CI). CI in dementia and Alzheimer's disease is associated with neuroinflammation. In this study, we investigated a potential role of neuroinflammation in ADT-related CI. Methods: Patients with prostate cancer on ADT for ≥3 months were categorized as having ADT-emergent CI or normal cognition (NC) based on self-report at interview. Neuroinflammation was evaluated using positron emission tomography (PET) with the translocator protein (TSPO) radioligand [11C]-PBR28. [11C]-PBR28 uptake in various brain regions was quantified as standardized uptake value (SUVR, normalized to cerebellum) and related to blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) choice-reaction time task (CRT) activation maps. Results: Eleven patients underwent PET: four with reported CI (rCI), six with reported NC (rNC), and one status unrecorded. PET did not reveal any between-group differences in SUVR regionally or globally. There was no difference between groups on brain activation to the CRT. Regardless of the reported cognitive status, there was strong correlation between PET-TSPO signal and CRT activation in the hippocampus, amygdala, and medial cortex. Conclusions: We found no difference in neuroinflammation measured by PET-TSPO between patients with rCI and rNC. However, we speculate that the strong correlation between TSPO uptake and BOLD-fMRI activation in brain regions involved in memory and known to have high androgen-receptor expression mediating plasticity (hippocampus and amygdala) might reflect inflammatory effects of ADT with compensatory upregulated/increased synaptic functions. Further studies of this imaging readout are warranted to investigate ADT-related CI.

2.
Galen Med J ; 10: e2097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35572849

RESUMO

Ever since discovering the fat-soluble secosteroid vitamin D, an abundance of research has been conducted on the molecular mechanisms for the multiple health benefits of this nutrient. Studies on the beneficial effects of vitamin D supplementation have found appreciable evidence suggesting that it may play a more prime role than initially presumed. Though it has largely been implicated in bone pathophysiology, novel research on vitamin D indicates its fundamental involvement in a wide range of disease processes through its multiple systemic effects, including but not limited to metabolic, cardiovascular, anti-inflammatory, antineoplastic, antioxidant, neuroprotective, and immune actions. Recent work has yielded important mechanistic insights into the functions of vitamin D in mediating immunity. The present work sheds light on the metabolism and immune response mechanisms of vitamin D. Current review is based on a thorough search of the available relevant research findings of the metabolic transformations of vitamin D and the molecular basis of its role in immunity. Apart from its classical mechanistic control of mineral homeostasis, vitamin D has immunomodulatory effects through various mechanisms at both systemic and cellular levels. Disruption of vitamin D reliant molecular pathways in the regulation of immune response can potentially result in the development and/or progression of autoimmune and infective processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...